FBstab: A proximally stabilized semismooth algorithm for convex quadratic programming
نویسندگان
چکیده
منابع مشابه
Stabilized Sequential Quadratic Programming
Recently, Wright proposed a stabilized sequential quadratic programming algorithm for inequality constrained optimization. Assuming the Mangasarian-Fromovitz constraint qualification and the existence of a strictly positive multiplier (but possibly dependent constraint gradients), he proved a local quadratic convergence result. In this paper, we establish quadratic convergence in cases where bo...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملA Semismooth Newton Method for Fast, Generic Convex Programming
We introduce Newton-ADMM, a method for fast conic optimization. The basic idea is to view the residuals of consecutive iterates generated by the alternating direction method of multipliers (ADMM) as a set of fixed point equations, and then use a nonsmooth Newton method to find a solution; we apply the basic idea to the Splitting Cone Solver (SCS), a state-of-the-art method for solving generic c...
متن کاملFurther Development on the Interior Algorithm for Convex Quadratic Programming
The interior trust region algorithm for convex quadratic programming is further developed. This development is motivated by the barrier function and the \center" path-following methods, which create a sequence of primal and dual interior feasible points converging to the optimal solution. At each iteration, the gap between the primal and dual objective values (or the complementary slackness val...
متن کاملGenetic Algorithm for Solving Convex Quadratic Bilevel Programming Problem∗
This paper presents a genetic algorithm method for solving convex quadratic bilevel programming problem. Bilevel programming problems arise when one optimization problem, the upper problem, is constrained by another optimization, the lower problem. In this paper, the bilevel convex quadratic problem is transformed into a single level problem by applying Kuhn-Tucker conditions, and then an effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2020
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2019.108801